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Research DriversResearch Drivers

model reduction, accompanied by 
loss of information that can be:

☺ Acceptable physically meaningful, accurate and stable solutions.

0 Trivial spectacular failure that is easy to detect.

1 Malicious subtle failure, imperceptible in the “eye ball” norm.

Research goals:

� Develop “compatible” discretizations to manage information loss
� Use these discretizations and their properties to

a) Formulate and analyze new numerical methods for PDEs
b) Support the development of better iterative solvers
c) Guide the design of better software tools for PDEs

Focus of this talk is on b) and c)

Lu = f → Ax = b
Discretization
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ImpactImpact

Project inception: FY03

� 2 short courses: Von Karman Institute (2003), VA Tech (2005)
� 1 book: Proceedings IMA workshop, Springer IMA series 142.

(Arnold, Bochev,Lehoucq, Nicolaides, Shashkov, eds.)

� 2 book chapters
� 14 papers in peer reviewed journals
� 15 talks (invited and plenary)
� 14 colloquium talks
� Originator and organizer:

– 2007 SIAM CS/E (with M. Shashkov)
– 2007 FE Fluids (with M. Gunzburger)
– 2006 CSRI PDE workshop (with R. Lehoucq and M. Gunzburger)
– 2004 IMA Workshop on compatible discretizations (Arnold, Lehoucq,Nicolaides, Shashkov)
– 2003 SIAM CS/E (with R. Tuminaro)

Internal
� Compatible methods for x-MHD - with J. Shadid, L. Chacon (LANL)
� z-pinch modeling and simulation in Alegra - with A. Robinson
� Device modeling and simulation in CHARON - with J. Shadid, R. Pawlovski
� ML solvers for Maxwell’s - with R. Tuminaro, J. Hu, C. Siefert

External
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Research ApproachResearch Approach
� Use homological ideas to identify formal mathematical structures (“analytic home”)

that allow to encode a representative set of PDEs

� Translate analytic structures into “compatible” discrete structures (“discrete home”)
that inherit their key properties

� Manage loss of information by translating PDEs into compatible discrete models
that live in the “discrete home”

� A compendium of failed discretizations  

� Analytic → discrete translation
– Based on two fundamental operators: Reduction and reconstruction

� Mimetic properties:
– Vector calculus and discrete cohomology

� Payback: 
– New infrastructure for interoperable software tools for FEM, FV, and FD discretizations
– More efficient AMG solvers via reformulation of the discrete Maxwell’s equations

Overview of my talk: 
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Deal or No Deal?Deal or No Deal?

Trivial failure: Mixed Galerkin 
and nodal (collocated) FEM

  

∇ ⋅ u = f in Ω
∇φ + u = 0 in Ω

φ = 0 on Γ

Malicious failure: Ritz-Galerkin 
and nodal (collocated) FEM

 

σ Ý E + ∇ × ∇μ−1 × E = 0 in Ω
n × E = 0 on Γ

compatible

QuickTime™ and a
Animation decompressor

are needed to see this picture.

QuickTime™ and a
Animation decompressor

are needed to see this picture.
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Common wisdom: ⇒ more accurate results

 

−Δu + ∇p = f in Ω

∇ ⋅ u = 0 in Ω

u = 0 on Γ
Deal or No Deal?Deal or No Deal?

Δ t → 0

Another malicious failure: false transient (spatially regularized nodal FE) 

True solution is time independent!
Bochev, Gunzburger, Lehoucq, IJNMF, 2007
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Why Homological Ideas?Why Homological Ideas?
In the examples, there was nothing wrong with the approximation properties

of the FEMs or the formal consistency of the methods.

We seek a discrete framework that mimics these relationships and provides mutually 
consistent notions of derivative, integral, inner product, Hodge theory, etc. 

We seek a discrete framework that mimics these relationships and provides mutually 
consistent notions of derivative, integral, inner product, Hodge theory, etc. 

Differential forms: Provide tools for abstraction of physical models leading to PDEs:
Cohomology: Describes structural relationships relevant to PDEs

Integration: → an abstraction of the measurement process
Differentiation: → gives rise to local invariants
Poincare Lemma: → expresses local geometric relations
Stokes Theorem: → gives rise to global relations

However, key relationships between differential operators and 
function spaces, necessary for the well-being of the PDE, were 

“lost in translation”
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An (incomplete) Historical SurveyAn (incomplete) Historical Survey

1977 - Fix, Gunzburger and Nicolaides: GDP (a discrete Hodge decomposition) is necessary and 
sufficient for stable and optimally accurate mixed Galerkin discretization of the Poisson equation

first (!) example of application of homological ideas in FEMs.
1989 - Bossavit: reveals connection between Whitney forms and stable elements for mixed methods 
for diffusion and eddy currents

1997 - Hiptmair: uses exterior calculus to develop uniform definitions of FEM spaces

1999 - Demkowicz, Ainsworth, et al: develop hp-DeRham polynomial spaces

1980s - Shashkov, Samarskii - Support operator method

1992 - Nicolaides - direct covolume discretization for div-curl and incompressible flows

1990s - Hyman, Scovel, Shashkov, Steinberg - Mimetic finite difference methods

1997   - Mattiussi - connection between FV and FEM

2004 - Bochev and Hyman - Algebraic topology approach: includes FV, FD and FEM 

2003 - White et al.: FEMSTER, a software realization of polynomial differential forms

2002 - Arnold et al.: uses homological ideas to find stable FEMs for mixed elasticity

In finite elements

Elsewhere: Discrete vector calculus structures
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Analytic → DiscreteAnalytic → Discrete

Reduction

Framework for mimetic discretizations (IMA Proceedings, 2006)

� Natural operations
� Discrete inner product
� Derived operations 

induced by 2 basic operations

� Exterior Derivative
� Metric structure
� Adjoint derivative 

Ck

Direct - FVD
Ck

Direct - FVD

Λk

Forms
Λk

Forms

{C0,C1,C2,C3}
Chains

{C0,C1,C2,C3}
Chains

{C0,C1,C2,C3}
Cochains

{C0,C1,C2,C3}
Cochains

 
R ω( )= ωζ jdx

Ci

∫

 I

Ω
Domain

Ω
Domain

{Ci}
Pullback - FEM

{Ci}
Pullback - FEM

  R I = id

  IR = id + O(hs) Reconstruction

  

Λk d⎯ → ⎯ Λk +1

b b

Ck{ } dh

⎯ → ⎯ Ck +1{ }
CDP

Joint work with M. Hyman
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Discrete Operations for R: Λk→CkDiscrete Operations for R: Λk→Ck

Adjoint derivative  δ* : Ck+1 a Ck δ∗a,b( )k
= a,δb( )k+1

Discrete Laplacian  D : Ck a Ck D = δ∗δ + δδ∗

Provides a second set of grad, div and curl operators.

Derived operations help to avoid internal inconsistencies between the discrete operations:
- I is only approximate inverse of R and natural definitions will clash.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.Flat and  sharp can be defined using the inner productQuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Natural derivative δa,σ = a,∂σ δ : Ck a Ck+1

Natural inner product ⋅,⋅( )k : Ck × Ck → R  a,b( )k = Ia,Ib( )k

Natural wedge product  ∧ : Ck × Cl a Ck+ l
 a∧b =R Ia∧Ib( )

scalars → 0 or 3-forms
vectors → 1 or 2-forms.

Derivative choice depends on encoding:
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Discrete Vector CalculusDiscrete Vector Calculus

Discrete Poincare lemma (existence of potentials in contractible domains)

dωk = 0 ⇒ ωk = dωk+1 δck = 0 ⇒ ck = δck +1

Discrete Stokes Theorem

dωk−1,ck = ωk−1,∂ck δck−1,ck = ck−1,∂ck

Discrete Vector Calculus

dd = 0 δδ = δ *δ* = 0

Mimetic = Key properties of the analytic structures inherited by the discrete
structures. First used by Hyman and Scovel (1988)

ω ∧η = (−1)klη ∧ω a ∧b = (−1)kl b ∧ a

d ω ∧η( )= dω ∧η + (−1)kω ∧ dη δ a ∧b( )= δa ∧b + (−1)k a ∧δb
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Discrete CohomologyDiscrete Cohomology

 dω = 0 ⇒ δR ω = 0

Natural inner product induces combinatorial Hodge theory on cochains:

Discrete Harmonic forms

H k Ω( )= η ∈ Λk Ω( ) | dη = d∗η = 0{ } H k K( )= ck ∈ Ck |δck = δ∗ck = 0{ }

ω = dρ + η + d∗σ a = δb + h + δ∗c

Theorem (IMA Proc., 2006) dimker Δ( )= dimker D( )

Discrete Hodge decomposition

Remarkable property of the mimetic D - kernel size is a topological invariant!

R is a chain map: preserves co-boundaries and co-cycles 

Co-cycles of (Λ0, Λ1, Λ2,Λ3) co-cycles of (C0, C1, C2, C3) R⎯ → ⎯ 
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“Roof”
H k = ω ∈ Λk | dω = d*ω = 0{ }   H

k = ker dk( )/Range dk−1( )

Λk Ω( )= Range dk−1( )⊕ H k ⊕ Range dk +1
*( )

ker Δ k( )= H k

ω = df + h + d*g

d : Λk Ω( )→ Λk +1 Ω( )
exterior derivative

d* : Λk +1 Ω( )→ Λk Ω( )
adjoint derivative

Δ : Λk Ω( )→ Λk Ω( )
Hodge Laplacian

∧: Λk Ω( )× Λl Ω( )→ Λk+ l Ω( )
wedge product

⋅,⋅( )k : Λk Ω( )× Λk Ω( )→ R

inner product

∫ : Λk Ω( )→ R

integral

“Bricks”

  ¸: Λk Ω( )→ Λn−k Ω( )
star operator

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture. : Λ1 Ω( )→ V Ω( )
sharp operator

flat operator

: V Ω( )→ Λ1 Ω( )QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

“Foundation”

  Λ
k Ω( ): x → ω(x) ∈ Alt k TxΩ( ) Smooth differential formsΛ0 Ω( ),Λ1 Ω( ),Λ2 Ω( ),Λ3 Ω( )( )

InventoryInventory
Non-localNon-local

Not usedNot used
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The TenantsThe Tenants

min
Λk

1
2

du 2 + d*u
2( )− f ,u( ) d*du + dd*u = f

−Δu = f
∇ × ∇ × u − ∇∇ ⋅ u = f

⎧ 
⎨ 
⎩ 

min
Λk

1
2

u 2 + du 2( )− f ,u( )

min
Λk

1
2

u 2 + d*u
2( )− f ,u( )

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

dd*u + u = f
d*du + u = f

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

−Δu + u = f
∇ × ∇ × u + u = f

−∇∇ ⋅ u + u = f

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

  

min
Λk

1
2

du 2 + d*u
2( )− f ,u( )

subject to du = 0 or d*u = 0 

du + d* p = f
d*u = 0

d*u + dp = f
du = 0

∇ × u + ∇p = f
∇ ⋅ u = f

⎧ 
⎨ 
⎩ 

“Laplacians”

“Incomplete Laplacians”

“Div-curl systems”

Div of a vector field QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

  d* u( )= ¸d¸( ) u( ) ∇ ⋅ u
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δte
1 + δ∗δe1 = 0

dteh
1 , ˆ e h

1( )Ω
+ deh

1 ,d ˆ e h
1( )Ω

= 0

Placing a PDE in the Discrete HomePlacing a PDE in the Discrete Home

Analytic problem

Ý E + σ −1∇ × μ−1∇ × E = 0 M1e
1 + D1

*D1e
1 = f

Discrete problem

Theorem (IMA Proc.,2006)

⇒ There’s only “one” low-order compatible method

   
dte +

σ̧ −1 d¸
μ −1

d *
6 7 4 8 4 

de = 0
Form translation

 R : Λk → Ck

 R : Λk → C j{ }

Let . Direct and pullback reconstructions yield equivalent methods.  R : Λk → Ck
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Analytic operator
(.,.), d, d*

Analytic operator
(.,.), d, d*

ReconstructionReconstruction

Cell DataCell Data

ReductionReduction

Discrete operator
M, D, DM-1DT

Discrete operator
M, D, DM-1DT

FormForm

Direct: FVDDirect: FVDPullback: FEMPullback: FEM

Higher order

Discrete FormDiscrete Form

cij
1 λidλ j − λ jdλi( )

i< j
∑ Vi

Example

covolume mimeticNedelec

Abstraction for OO Software DesignAbstraction for OO Software Design

General cells

This prompts a fresh look at software design for compatible discretizations:
Ö Different methods are defined by choosing a specific reconstruction operator I:

Direct: I is low order but more easily extendable to arbitrary cells
Pullback: I is high order but not easy to extend beyond standard cells

Ö There’s no fundamental reason not to have simultaneous access to both…



Computational mathematics and algorithms  SAND2007-3070Chttp://www.cs.sandia.gov/~pbboche/

Global_kForm

ChainComplex
MOAB/TSTT

DiscreteOperator
Epetra/Trilinos

Order

Type
FEM←→ FVD

Local_kForm

MultiCell LocalOperator

Flavor

Intrepid*Intrepid*

INteroperable Tools for Rapid dEveloPment of compatIble Discretizations

Joint work with D. Ridzal, D. Day
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Anticipated Applications

Intrepid will enable side by side comparisons of FV and mimetic div free methods and 
FEM using vector potential and B-projection, and discretization tools for extended MHD 
modeling and simulation (Shadid, Banks, Chacon). 

CHARON - X-MHD

CHARON - DEVICE
Intrepid will be used to test compatible discretizations for device modeling, prototype optimization 
and control problems, and as a discretization library (Pawlovski, Shadid, Bartlet) 

ALEGRA

Intrepid will provide discretization tools for multimaterial ALE modeling and simulation 
on general polyhedral cells (Robinson, Shashkov, Lipnikov) 

Org.1641 (HEDP Theory)

Intrepid will provide discretization tools for Sandia’s Pulsed Power modeling and simulation effort 
(Hanshaw, Brunner, Robinson) 

External:
LANL Theoretical Division T-7 (Shashkov)
Center for computation & technology, Louisiana State University
HERMES project, UT El Paso (Solin)
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Reformulation of Maxwell’s equationsReformulation of Maxwell’s equations

Recall the mimetic discretization of the primal equation

σ Ý E + ∇ × μ−1∇ × E = 0
pde

σe + d*de = f
forms

M1e
1 + D1

*D1e
1 = f

matrix equation

Relevant operators acting on 1-cochains:

D1
*D1 = D1

TM2D1

e1 = D0 p0 + D1
*b2 A Hodge decomposition

A curl-curl operator

D1
*D1

+

D0D0
*

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

=
D1

TM2D1

+

M1D0M0
−1D0

TM1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

D0D0
* = M1D0M0

−1D0
TM1 A grad-div operator

A Hodge Laplacian
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

Sandia app: Z-pinch

Requires specialized AMG 
solvers to deal with Ker(curl)

Joint work with R. Tuminaro, J. Hu, C. Siefert
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Why Reformulate?Why Reformulate?

e1 = D0 p0 + ˜ D 1
*b2 = D0 p0 + ˜ M 1

−1D1
TM2b

2

∇ × μ−1∇ × −σ∇∇ ⋅ σ ≈ Ch + Gh

� Reformulate and then discretize: first add grad div and then discretize 
Misconception: reformulation allows to use collocated methods, e.g., nodal FE
Major issue: scaling of the Laplacian when σ varies orders of magnitude

curl curl completely 
dominates grad div 

when σ ≈ 0

curl curl completely 
dominates grad div 

when σ ≈ 0

� Discretize and then reformulate: our approach - add discrete grad div
Key idea: use different inner product for the Hodge decomposition of 1-cochains

ML methods work well for Laplacians ⇒ make curl-curl more “Laplace”-like

� Issue: does this “mismatched” Laplacian have the same null-space as the true one?

D1
TM2D1 + ˜ M 1D0M0

−1D0
T ˜ M 1 ≈ ∇ × μ−1∇ × − ∇γ−1∇ ⋅

is scaled by 1!

is scaled by γ=μ

is scaled by 1!

is scaled by γ=μ

˜ M 1

M0
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 H Ω,div( )∩ H Ω,curl( )

Why not Reformulate and Then Discretize?Why not Reformulate and Then Discretize?

H1

Reformulate and discretize approaches that work need additional structure:

- Single mesh: Manteuffel et. al. - using potentials for E,J,B,H (potentials are more regular)
- Primal-dual: Haber et al. - using Yee scheme (curl on primal, div on dual)

 Vh ⊂ H Ω,curl( )⇒ Eh × n[ ]= 0

 ∀
ˆ E ∈ H Ω,div( )∩ H Ω,curl( )

 Vh ⊂ H Ω,div( ) ⇒ Eh ⋅ n[ ]= 0

∇ × E,∇ × ˆ E ( )μ −1
+ ∇ ⋅ σE,∇ ⋅ σE( )γ −1 = 0

  H Ω,div( )∩ H Ω,curl( )⊃ Vh Eh[ ]= 0 ⇒ Vh ⊂ H1 Ω( )

Reformulated problem

Assume a general unstructured grid without a topologically dual

Conforming discretization

The problem: in 3D H1 can have infinite co-dimension in H(div)∩H(curl) 

Vh
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Discretize and Then Reformulate:Discretize and Then Reformulate:
Theorem

Assume that e1 solves the discrete Maxwell’s equation and let .

The pair (a1, p0), where , solves the reformulated Maxwell’s equationa1 = ˜ D 1
*b2

e1 = D0 p0 + ˜ D 1
*b2

M1 + D1
TM2D1 + ˜ M 1D0M0

−1D0
T ˜ M 1 M1D0

D0
TM1 D0

TM1D0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

a1

p0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

f
g

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

dimker D1
TM2D1 + ˜ M 1D0M0

−1D0
T ˜ M 1( )= dimker D1

TM2D1 + M1D0M0
−1D0

TM1( )= 0

Theorem
Kernels of the mismatched and standard Laplacian have the same dimension 

Proof uses that mimetic spaces inherit the cohomology of the analytic 
spaces and so: for contractible domains.dimker Δ( )= dimker D( )

Exercise: try proving this directly using only linear algebra!

Related approaches:
Ö Hiptmair, Xu, Kolev, Vassilevski: auxiliary space preconditioners use the so-

called regular decomposition of H(curl) instead of the Hodge decomposition;

Ö Bossavit: same edge inner product, uses lumped mass over dual volumes
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Solver PerformanceSolver Performance
Because the blocks of the reformulated system are the 
edge Laplacian and node Laplacian, we can apply a 
standard AMG for the Laplace eq. to solve the problem 
(after applying edge to node interpolant to 1-1 block).  

3 Cheb.2 Cheb.3 Cheb.2 Cheb.

41(23%)54(12%)53661,123,696

26(28%)33(28%)3543140,528

17(6%)21(15%)18282,300

ReformulatedML-edge elementsMETH
DOF

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

A-slot regression test problem: ALEGRA (C. Siefert)

mesh refinement 1,4,8 times
conductivity: σ=1 (void); σ=6*106 (material))

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture

ML = specialized, highly tuned AMG for edge elements (Trilinos)

Reformulated = off the shelf AMG for Poisson equation, few tricks!
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Solver PerformanceSolver Performance

The edge Laplacian has the right null-space but lives on the edges - needs to be
transferred to a nodal Laplacian before we apply OTS AMG.

Trick 1: piecewise edge constants on first fine level only (theory “says” that’s OK)
are used to define a cheap grid transfer to nodes to avoid complexity.

Trick 2: the fine grid smoother ignores the discrete gauge term! Hence we never
need to form it explicitly, effectively it gauges the coarse grid operator.

σ sensitivity: μ sensitivity:

Under the hood

The new solver has been run in parallel to ~2000 processors with about a 65% 
(weak scaling) efficiency on a model problem.

ML trivia
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� Compatible discretizations inherit key structural properties of analytic spaces & operators

– discrete models are physical ⇒ have intrinsic control over information loss

� We presented a framework for compatible discretizations where:
– All operations are defined by two mappings: reduction R and reconstruction I
– The central concept is the natural inner product

� The framework has two basic operation types
– Natural derivative, inner product, wedge product,…
– Derived adjoint derivative, Hodge Laplacian,…

� The framework has important mimetic properties:

– discrete vector calculus
– combinatorial Hodge theory

� The framework helped us to

– Recognize that differences between FV, FD and FE are largely superficial

– Derive a powerful abstraction of the discretization process and use it to develop new 
software design for interoperable discretization tools

– Reformulate the discrete Maxwell’s equations so as to make them better suited for ML solvers

ConclusionsConclusions


