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Power Dissipation Trends
Or, why I can’t just wait for computers to get faster
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Peak CPU speeds are stable

From 
http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu
_charts_2005/
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Why is achieved performance on a single 
node so poor?
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Fixing the Performance Gap
Large gap in performance forces a design to “impedance match”
CPU to memory
Computer systems have complex, multilevel memory hierarchies
Complexity results in nonlinear behavior for simple operations

This diagram 
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Challenges in Creating a Performance Model Based on Memory 
Accesses 

Different levels of the memory 
hierarchies have significantly 
different performance
Time (work) is a nonlinear
function of copy size
– Source of “superlinear”

speedup - that is real
Cache behavior sensitive to 
details of data layout
Still no good calculus for 
predicting performance
– But all hope is not lost
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All this makes prediction hard
But in best applied math tradition, bounds are possible and valuable
Example: Sparse Matrix-Vector Product
– Common operation for optimal (in floating-point operations) 

solution of linear systems
– Sample code (in C):

for row=1,n
m   = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*j++];
y[i] = sum;

– Data structures are a[nnz], j[nnz], i[n], x[n], y[n]



Argonne National 
Laboratory AMR PI Meeting

Simple Performance Analysis

Memory motion:
– nnz (sizeof(double) + sizeof(int)) + 

n (2*sizeof(double) + sizeof(int)) 
– Assume a perfect cache (never load same data twice; only 

compulsory loads)
Computation
– nnz multiply-add (MA)

Roughly 12 bytes per MA
Typical WS node can move 1-4 bytes/MA
– Maximum performance is 8-33% of peak
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More Performance Analysis

Instruction Counts:
– nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double) 
Roughly 4 instructions per MA
Maximum performance is 25% of peak (33% if MA overlaps one 
load/store)
– (wide instruction words can help here)

Changing matrix data structure (e.g., exploit small block structure) 
allows reuse of data in register, eliminating some loads (x and j)
Implementation improvements (tricks) cannot improve on these 
limits
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Comments
Simple model based on memory performance gives good bounds
on performance
– Detailed prediction requires much more work; often not 

necessary or relevant to the algorithm designer
What do you do if observed performance is far short of predicted 
performance?
– Take a closer look at the memory motion
– Perfect cache assumption is often violated; nonlinear 

performance behavior gives significant cost to any miss
– Define algorithm in terms of nested amounts of memory - create 

a family of algorithms
• For example, in terms of blocks (matrices and meshes)
• Note that they may not be numerically identical to the 

unblocked algorithm, so analysis is needed
– One idea is Cache oblivious algorithms

• Contain no parameters (or only a single minimum size)
• Successful for dense matrix-matrix multiply
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Adapting the Algorithm to Architecture
Problem:
– u ∈ℜn, F(u) = 0, representing nonlinear PDE on Domain Ω .  

Discretize.
Typical Algorithmic decomposition:
– Nonlinear problem →

Newton method →
Linear system involving Jacobian matrix →

Solve linear system in parallel
However, limited temporal locality for linear solves, particularly for 
solvers such as multigrid
One Solution: Cross - iteration algorithms
– Think in blocks involving time/iteration, not just slices
– Examples - CG methods, Nonlinear Schwarz
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Nonlinear Schwarz Brings Back 
Memory Reuse

An alternate approach:
– Divide Ω into overlapping domains Ωi, boundaries ∂Ωi Let ui be u 

restricted to Ωi. ∂Ωi ∩Ω set from Ωj

– For k=0, ...
Solve F(u1

k+1,u2
k) = 0 for u1

k+1on Ω1,
Solve F(u1

k,u2
k+1) = 0 for u2

k+1 on Ω2, …

Each subdomain involves local (cache resident) solve
– Choose Ωi to fit in fast memory
– Nonlinear methods are not (yet) O(1)

• Permit temporal locality
– Linear solvers used are O(1)

Memory hierarchy handled through multilevel version
– Solve F(u1

k+1,u2
k) = 0 for u1

k+1on Ω1with nonlinear Schwarz, etc.
For an intro to memory issues for algorithm designers, see

– Karp in SIAM Review 1996
– McGeoch, AMS Notices March 2001
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The Dimensions of a Typical Cluster
6.1 m x 2.1 m x 1m
1-norm size (airline baggage 
norm) = 9.2m 
At 2.4Ghz, = 
74 cycles
(49 x 17 x 8)
Real distance is greater
– Routes longer
– Signals slower than light in a 

vacuum
PRAM (Parallel Random Access 
Memory) model is not helpful
– Like using Newtonian mechanics 

for predicting behavior of near 
lightspeed particles

– It is too simple
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Two Challenges for Scalable 
Computing

Amdahl’s law
– Maximum speed up = 1/(1-(Ts/(Ts+Tp)) = 1/(1-serial_fraction)
– For applications that require every bit of available memory (so called weak 

scaling), the serial_fraction is very small
– For applications with fixed problem size (strong scaling), this is often already a 

problem
Little’s law

– From queueing theory
• In a stable system, the arrival rate * the residency time equals the number in 

the queue
– For memory, we have

• Residency time = memory latency
• Arrival rate = 1/clock
• Thus number = memory latency in clocks

– This number is the number of outstanding operations, such as loads, or the 
number of concurrent operations needed to avoid waiting on memory

– Typical values are 100-250
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Achieving Good Scaling 
Solve a 3-D Poisson Problem as 
part of a larger application
Algorithm is Multigrid 
preconditioned CG
One system shows good 
(predicted) scaling
The other eventually shows a 
slowdown
Why?
– System 1 has a special 

network for MPI_Allreduce.  
Cost is low and nearly constant

– System 2 does not.  Cost is 
(relatively) high

Time for 3-D Poisson Solve
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Reorganizing Conjugate Gradient for 
High Performance

Problem:
– Solve a linear system Ax = b

Conjugate Gradient Method:
– Iterate, computing Ap(n) at the nth step
– Form new approximate solution using dot products and vector 

operations
Performance Problems
– Dot products cause synchronization
– Sparse matrix-vector products strain memory system
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Effect of Inner Products

Typical Krylov method
β = rTz
ρ = β/ βold
βold = β

p = z + ρ p
z = Ap
α = β/pTz
x = x + α p
r = r − α z
z = Mr

Not numerically identical (compiler must not do this)
Deeper pipelining possible by further loop unrolling (also 
not numerically identical)

Rearange to
start β = rTz
z1 = Az
end β = rTz 
ρ = β/ βold
βold = β
p = z + ρp
z = z1 + ρz     (=Az + ρApold=Ap)
α = β/pTz
x = x + α p
r = r − α z
z = Mr
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Comments
No claim that this is the right thing to do
– Illustrates the opportunities

Must analyze tradeoffs
– More floating point operations
– More data motion
– Less waiting for inner product

General Ideas
– Overlap communication with useful work
– Consider cross (sub)step and cross iteration transformations
– Initiate early, wait late

This is a simple algebraic approach
– The real solution is to apply these principles at the algorithmic 

level to gain much greater benefit
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Massive Scale
Load Balancing
– Work virtualization

• Give the system flexibility to allocate resources
Fault Management
– Fault detection

• Check, do not impose, conservation properties
• Symmetries imply conservation principles - exploit them
• “Assessing Fault Sensitivity in MPI Applications," SC2004 Best 

Technical Paper
– Fault Recovery

• Compact representations for checkpointing
– E.g., do you need every bit for a valid simulation, or could you

store a set of coefficients for a FE representation to the 
computational accuracy?  Is there a natural different 
representation that could be stored?

• What is the minimum amount of information that is needed?
– Don’t forget to cost-weight the information!

• Is there redundant information that can be used to reconstruct lost 
data?
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Not Everything is PetaScale computing
Make better use of otherwise idle processors for laptop/deskktop 
computations
– Error estimates and bounds
– Sensitivity and Uncertainty Quantification
– Serendipity

• Data mine previous results
Ubiquitous computing
– Low power - results per watt-second (Joule) may be more important

What Does Multicore/Manycore Imply?
– It is and is not SMP

• Very high bandwidth, relatively low latency for memory “on chip”
• Same problems (or worse!) to off-chip memory

– Using the extra processors with the same (on chip) memory
• Helper threads
• Concurrent computation on same data



Argonne National 
Laboratory AMR PI Meeting

Is Performance Everything?
“In August 1991, the Sleipner A, an oil and gas platform built in Norway 
for operation in the North Sea, sank during construction. The total 
economic loss amounted to about $700 million. After investigation, it 
was found that the failure of the walls of the support structure resulted 
from a  serious error in the finite element analysis of the linear elastic 
model.” (http://www.ima.umn.edu/~arnold/disasters/sleipner.html)

Even better, more accurate computations not only predicted the failure, 
they predicted the depth at which the structure would fail within 5%
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What Can You Do?
Re-examine old algorithms

– Performance costs have changed
– Increase memory efficiency of algorithms (higher order, better analysis instead of 

resolution refinement, …)
– But some algorithms are still bad ideas

Use performance bounds that include memory, CPU, and instruction mix
– Consider performance an interval or a distribution, not a single number
– Insist on relevant work bounds (estimates) in research papers and text books

Reconsider problem decompositions
– Overly simple decompositions (e.g., stratified solvers) waste CPU resources
– Design around memory motion

• All machines suffer from memory wall
– Techniques to deal with memory wall differ but none eliminate it

– Split operations that make use of “far away” resources
Create families of algorithms that adapt to memory and concurrency

– These provide a way for CS folks to help adapt the algorithm to the complexities 
of the hardware


